(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(cons(nil, z0)) → z0
f(cons(f(cons(nil, z0)), z1)) → copy(n, z0, z1)
copy(0, z0, z1) → f(z1)
copy(s(z0), z1, z2) → copy(z0, z1, cons(f(z1), z2))
Tuples:
F(cons(nil, z0)) → c
F(cons(f(cons(nil, z0)), z1)) → c1(COPY(n, z0, z1))
COPY(0, z0, z1) → c2(F(z1))
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)), F(z1))
S tuples:
F(cons(nil, z0)) → c
F(cons(f(cons(nil, z0)), z1)) → c1(COPY(n, z0, z1))
COPY(0, z0, z1) → c2(F(z1))
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)), F(z1))
K tuples:none
Defined Rule Symbols:
f, copy
Defined Pair Symbols:
F, COPY
Compound Symbols:
c, c1, c2, c3
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
F(cons(f(cons(nil, z0)), z1)) → c1(COPY(n, z0, z1))
F(cons(nil, z0)) → c
COPY(0, z0, z1) → c2(F(z1))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(cons(nil, z0)) → z0
f(cons(f(cons(nil, z0)), z1)) → copy(n, z0, z1)
copy(0, z0, z1) → f(z1)
copy(s(z0), z1, z2) → copy(z0, z1, cons(f(z1), z2))
Tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)), F(z1))
S tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)), F(z1))
K tuples:none
Defined Rule Symbols:
f, copy
Defined Pair Symbols:
COPY
Compound Symbols:
c3
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(cons(nil, z0)) → z0
f(cons(f(cons(nil, z0)), z1)) → copy(n, z0, z1)
copy(0, z0, z1) → f(z1)
copy(s(z0), z1, z2) → copy(z0, z1, cons(f(z1), z2))
Tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
S tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
K tuples:none
Defined Rule Symbols:
f, copy
Defined Pair Symbols:
COPY
Compound Symbols:
c3
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(cons(f(cons(nil, z0)), z1)) → copy(n, z0, z1)
copy(0, z0, z1) → f(z1)
copy(s(z0), z1, z2) → copy(z0, z1, cons(f(z1), z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(cons(nil, z0)) → z0
Tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
S tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
COPY
Compound Symbols:
c3
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
We considered the (Usable) Rules:none
And the Tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(COPY(x1, x2, x3)) = x1 + x3
POL(c3(x1)) = x1
POL(cons(x1, x2)) = 0
POL(f(x1)) = 0
POL(nil) = 0
POL(s(x1)) = [1] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(cons(nil, z0)) → z0
Tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
S tuples:none
K tuples:
COPY(s(z0), z1, z2) → c3(COPY(z0, z1, cons(f(z1), z2)))
Defined Rule Symbols:
f
Defined Pair Symbols:
COPY
Compound Symbols:
c3
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)